LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Increased EMG intermuscular coherence and reduced signal complexity in Parkinson’s disease

OBJECTIVES To investigate differences in surface electromyography (EMG) features in individuals with idiopathic Parkinson's disease (PD) and aged-matched controls. METHODS Surface EMG was recorded during isometric leg extension in PD… Click to show full abstract

OBJECTIVES To investigate differences in surface electromyography (EMG) features in individuals with idiopathic Parkinson's disease (PD) and aged-matched controls. METHODS Surface EMG was recorded during isometric leg extension in PD patients prior to, and after undergoing a locomotor training programme, and in aged-matched controls. Differences in EMG structure were quantified using determinism (%DET), sample entropy (SampEn) and intermuscular coherence. RESULTS %DET was significantly higher, and SampEn significantly lower, in PD patients. Intermuscular coherence was also significantly higher in the PD group in theta, alpha and beta frequency bands. %DET increased and SampEn decreased with increasing Movement-Disorder-Society UPDRS scores, while theta band coherence was significantly correlated with total MDS-UPDRS scores and torque variance. Neither %DET, SampEn nor intermuscular coherence changed in response to training. CONCLUSIONS The differences observed are consistent with increased synchrony among motor units within and across leg muscles in PD. Differences between EMG signals recorded from the PD and control groups persisted post-therapy, after improvements in walking capacity occurred. SIGNIFICANCE These results provide insight into changes in motoneuron activity in PD, demonstrate increased beta band intramuscular coherence in PD for the first time, and support the development of quantitative biomarkers for PD based on advanced surface EMG features.

Keywords: increased emg; intermuscular coherence; coherence; parkinson disease

Journal Title: Clinical Neurophysiology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.