LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MEG detection of high frequency oscillations and intracranial-EEG validation in pediatric epilepsy surgery

Photo from wikipedia

OBJECTIVE To assess the feasibility of automatically detecting high frequency oscillations (HFOs) in magnetoencephalography (MEG) recordings in a group of ten paediatric epilepsy surgery patients who had undergone intracranial electroencephalography… Click to show full abstract

OBJECTIVE To assess the feasibility of automatically detecting high frequency oscillations (HFOs) in magnetoencephalography (MEG) recordings in a group of ten paediatric epilepsy surgery patients who had undergone intracranial electroencephalography (iEEG). METHODS A beamforming source-analysis method was used to construct virtual sensors and an automatic algorithm was applied to detect HFOs (80-250 Hz). We evaluated the concordance of MEG findings with the sources of iEEG HFOs, the clinically defined seizure onset zone (SOZ), the location of resected brain structures, and with post-operative outcome. RESULTS In 8/9 patients there was good concordance between the sources of MEG HFOs and iEEG HFOs and the SOZ. Significantly more HFOs were detected in iEEG relative to MEG t(71) = 2.85, p < .05. There was good concordance between sources of MEG HFOs and the resected area in patients with good and poor outcome, however HFOs were also detected outside of the resected area in patients with poor outcome. CONCLUSION Our findings demonstrate the feasibility of automatically detecting HFOs non-invasively in MEG recordings in paediatric patients, and confirm compatibility of results with invasive recordings. SIGNIFICANCE This approach provides support for the non-invasive detection of HFOs to aid surgical planning and potentially reduce the need for invasive monitoring, which is pertinent to paediatric patients.

Keywords: frequency oscillations; high frequency; meg; epilepsy surgery; hfos

Journal Title: Clinical Neurophysiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.