LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resolving and characterizing the incidence of millihertz EEG modulation in critically ill children

Photo by nypl from unsplash

OBJECTIVE We analyze a slow electrographic pattern, Macroperiodic Oscillations (MOs), in the EEG from a cohort of young critical care patients (n = 43) with continuous EEG monitoring. We construct novel quantitative… Click to show full abstract

OBJECTIVE We analyze a slow electrographic pattern, Macroperiodic Oscillations (MOs), in the EEG from a cohort of young critical care patients (n = 43) with continuous EEG monitoring. We construct novel quantitative methods to quantify and understand MOs. METHODS We applied a nonparametric bilevel spectral analysis to identify MOs, a millihertz (0.004-0.01 Hz) modulation of 5-15 Hz activity in two separate ICU patient cohorts (n = 195 total). We also developed a rigorous measure to quantify MOs strength and spatial expression, which was validated against surrogate noise data. RESULTS Strong or spatially widespread MOs appear in both high clinical suspicion and a general ICU population. In the former, patients with strong or spatially widespread MOs tended to have worse clinical outcomes. Intracranial pressure and heart rate data from one patient provide insight into a potential broader physiological mechanism for MOs. CONCLUSIONS We quantified millihertz EEG modulation (MOs) in cohorts of critically ill pediatric patients. We demonstrated high incidence in two patient populations. In a high suspicion cohort, MOs are associated with poor outcome, suggesting future potential as a diagnostic and prognostic aid. SIGNIFICANCE These results support the existence of EEG dynamics across disparate time-scales and may provide insight into brain injury physiology in young children.

Keywords: millihertz eeg; eeg modulation; critically ill; modulation; mos

Journal Title: Clinical Neurophysiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.