LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines.

Photo by jordanmcdonald from unsplash

This paper uses a divergence-conforming B-spline fluid discretization to address the long-standing issue of poor mass conservation in immersed methods for computational fluid-structure interaction (FSI) that represent the influence of… Click to show full abstract

This paper uses a divergence-conforming B-spline fluid discretization to address the long-standing issue of poor mass conservation in immersed methods for computational fluid-structure interaction (FSI) that represent the influence of the structure as a forcing term in the fluid subproblem. We focus, in particular, on the immersogeometric method developed in our earlier work, analyze its convergence for linear model problems, then apply it to FSI analysis of heart valves, using divergence-conforming B-splines to discretize the fluid subproblem. Poor mass conservation can manifest as effective leakage of fluid through thin solid barriers. This leakage disrupts the qualitative behavior of FSI systems such as heart valves, which exist specifically to block flow. Divergence-conforming discretizations can enforce mass conservation exactly, avoiding this problem. To demonstrate the practical utility of immersogeometric FSI analysis with divergence-conforming B-splines, we use the methods described in this paper to construct and evaluate a computational model of an in vitro experiment that pumps water through an artificial valve.

Keywords: conforming splines; fluid; divergence conforming; analysis; divergence; structure

Journal Title: Computer methods in applied mechanics and engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.