This paper presents the construction of novel stabilized finite element methods in the convective–diffusive context that exhibit correct-energy behavior. Classical stabilized formulations can create unwanted artificial energy. Our contribution corrects… Click to show full abstract
This paper presents the construction of novel stabilized finite element methods in the convective–diffusive context that exhibit correct-energy behavior. Classical stabilized formulations can create unwanted artificial energy. Our contribution corrects this undesired property by employing the concepts of dynamic as well as orthogonal small-scales within the variational multiscale framework (VMS). The desire for correct energy indicates that the large- and small-scales should be H 0 1 -orthogonal. Using this orthogonality the VMS method can be converted into the streamline-upwind Petrov–Galerkin (SUPG) or the Galerkin/least-squares (GLS) method. Incorporating both large- and small-scales in the energy definition asks for dynamic behavior of the small-scales. Therefore, the large- and small-scales are treated as separate equations. Two consistent variational formulations which depict correct-energy behavior are proposed: (i) the Galerkin/least-squares method with dynamic small-scales (GLSD) and (ii) the dynamic orthogonal formulation (DO). The methods are presented in combination with an energy-decaying generalized-α time-integrator. Numerical verification shows that dissipation due to the small-scales in classical stabilized methods can become negative, on both a local and a global scale. The results show that without loss of accuracy the correct-energy behavior can be recovered by the proposed methods. The computations employ NURBS-based isogeometric analysis for the spatial discretization.
               
Click one of the above tabs to view related content.