LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variational phase-field formulation of non-linear ductile fracture

Photo from wikipedia

Abstract Variationally consistent phase-field methods have been well established in the recent decade. A wide range of applications to brittle and ductile fracture problems could already demonstrate the ability to… Click to show full abstract

Abstract Variationally consistent phase-field methods have been well established in the recent decade. A wide range of applications to brittle and ductile fracture problems could already demonstrate the ability to predict complex crack patterns in three-dimensional geometries. However, current phase-field models to ductile fracture are not formulated for both, material and geometrical non-linearities. In this contribution we present a computational framework to account for three-dimensional fracture in ductile solids undergoing large elastic and plastic deformations. The proposed model is based on a triple multiplicative decomposition of the deformation gradient and an exponential update scheme for the return map in the time discrete setting. This increases the accuracy on the entire range of the ductile material behavior encompassing elastoplasticity, hardening, necking, crack initiation and propagation. The accuracy and convergence properties are further improved by the application of a higher order phase-field regularization and a gradient enhanced plasticity model. To account for the ductile behavior at fracture, a model of the critical fracture energy density depending on the equivalent plastic strain is proposed and validated by experimental data.

Keywords: ductile fracture; variational phase; phase field; fracture

Journal Title: Computer Methods in Applied Mechanics and Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.