LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A new multi-resolution parallel framework for SPH

Photo from wikipedia

Abstract In this paper we present a new multi-resolution parallel framework, which is designed for large-scale SPH simulations of fluid dynamics. An adaptive rebalancing criterion and monitoring system is developed… Click to show full abstract

Abstract In this paper we present a new multi-resolution parallel framework, which is designed for large-scale SPH simulations of fluid dynamics. An adaptive rebalancing criterion and monitoring system is developed to integrate the CVP partitioning method as rebalancer to achieve dynamic load balancing of the system. A localized nested hierarchical data structure is developed in cooperation with a tailored parallel fast-neighbor-search algorithm to handle problems with arbitrarily adaptive smoothing-length and to construct ghost buffer particles in remote processors. The concept of “diffused graph” is proposed in this paper to improve the performance of the graph-based communication strategy. By utilizing the hybrid parallel model, the framework is able to exploit the full parallel potential of current state-of-the-art clusters based on Distributed Shared Memory (DSM) architectures. A range of gas dynamics benchmarks are investigated to demonstrate the capability of the framework and its unique characteristics. The performance is assessed in detail through intensive numerical experiments at various scales.

Keywords: parallel framework; resolution parallel; multi resolution; framework; new multi

Journal Title: Computer Methods in Applied Mechanics and Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.