LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient cut-cell quadrature based on moment fitting for materially nonlinear analysis

Photo by nci from unsplash

Abstract Cut-cell quadrature based on the moment fitting scheme generates an accurate numerical integration rule for each cut element with the same small number of point evaluations as a standard… Click to show full abstract

Abstract Cut-cell quadrature based on the moment fitting scheme generates an accurate numerical integration rule for each cut element with the same small number of point evaluations as a standard Gauss quadrature rule. It therefore significantly increases the efficiency of unfitted finite element schemes such as the finite cell method that have often relied on cut-cell integration with prohibitively many quadrature points. Moment fitting, however, does not directly apply to inhomogeneous integrands as they result from nonlinear material behavior. In this article, we describe a novel modification of moment fitting approach that opens the door for its application in materially nonlinear analysis. The basic idea is the decomposition of each cut cell into material subdomains, each of which can be assigned a physically valid location where constitutive integration and the update of local history variables can be performed. We formulate a moment fitting scheme for each material subdomain using the same quadrature points, such that the resulting weights from all material subdomains can be added and the total number of point evaluations remains the same as in standard Gauss quadrature. We discuss numerical details of the modified scheme, including its ramifications for consistent linearization, and demonstrate its optimal performance in the context of the finite cell method and elastoplasticity.

Keywords: quadrature; moment fitting; cut cell

Journal Title: Computer Methods in Applied Mechanics and Engineering
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.