Abstract Because of its nonlinearity and path-dependency, analysis of the elasto-plastic behavior of the finite element (FE) model is computationally expensive. By directly learning sequential data, modeling plasticity via deep… Click to show full abstract
Abstract Because of its nonlinearity and path-dependency, analysis of the elasto-plastic behavior of the finite element (FE) model is computationally expensive. By directly learning sequential data, modeling plasticity via deep learning has shown successful performance in immediately predicting the path-dependent response. However, large-scale elasto-plastic FE models still have challenges in that they require numerous degrees of freedom and are accompanied by high-dimensional data. This study proposes a practical framework for the surrogate modeling of a large-scale elasto-plastic FE model by combining long short-term memory (LSTM) neural networks with proper orthogonal decomposition (POD). First, displacement, plastic strain magnitude, and von Mises stress are generated using commercial FE analysis software, and then, the high-dimensional data are reduced to low-dimensional POD coefficient data before being used for training. With the drastically reduced data, a neural network architecture can be introduced in the form of individual and ensemble structures to achieve accurate and robust prediction. As the proposed POD-LSTM surrogate model operates on the structural level, POD-LSTM surrogate models are constructed and implemented for each of the three large-scale elasto-plastic FE models. In all three examples, the proposed POD-LSTM surrogate models were found to be efficient and accurate for predicting elasto-plastic responses.
               
Click one of the above tabs to view related content.