LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A lightweight rapid application development framework for biomedical image analysis

Photo from wikipedia

Biomedical imaging analysis typically comprises a variety of complex tasks requiring sophisticated algorithms and visualising high dimensional data. The successful integration and deployment of the enabling software to clinical (research)… Click to show full abstract

Biomedical imaging analysis typically comprises a variety of complex tasks requiring sophisticated algorithms and visualising high dimensional data. The successful integration and deployment of the enabling software to clinical (research) partners, for rigorous evaluation and testing, is a crucial step to facilitate adoption of research innovations within medical settings. In this paper, we introduce the Simple Medical Imaging Library Interface (SMILI), an object oriented open-source framework with a compact suite of objects geared for rapid biomedical imaging (cross-platform) application development and deployment. SMILI supports the development of both command-line (shell and Python scripting) and graphical applications utilising the same set of processing algorithms. It provides a substantial subset of features when compared to more complex packages, yet it is small enough to ship with clinical applications with limited overhead and has a license suitable for commercial use. After describing where SMILI fits within the existing biomedical imaging software ecosystem, by comparing it to other state-of-the-art offerings, we demonstrate its capabilities in creating a clinical application for manual measurement of cam-type lesions of the femoral head-neck region for the investigation of femoro-acetabular impingement (FAI) from three dimensional (3D) magnetic resonance (MR) images of the hip. This application for the investigation of FAI proved to be convenient for radiological analyses and resulted in high intra (ICC=0.97) and inter-observer (ICC=0.95) reliabilities for measurement of α-angles of the femoral head-neck region. We believe that SMILI is particularly well suited for prototyping biomedical imaging applications requiring user interaction and/or visualisation of 3D mesh, scalar, vector or tensor data.

Keywords: application development; analysis; biomedical imaging; application; development

Journal Title: Computer methods and programs in biomedicine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.