LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic cataract grading methods based on deep learning

Photo by artbyhybrid from unsplash

BACKGROUND AND OBJECTIVE The shortage of ophthalmologists in rural areas in China causes a lot of cataract patients not getting timely diagnosis and effective treatment. We develop an algorithm and… Click to show full abstract

BACKGROUND AND OBJECTIVE The shortage of ophthalmologists in rural areas in China causes a lot of cataract patients not getting timely diagnosis and effective treatment. We develop an algorithm and platform to automatically diagnose and grade cataract based on fundus images of patients. This method can help government assisting poor population more accurately. METHODS The novel six-level cataract grading method proposed in this paper focuses on the multi-feature fusion based on stacking. We extract two kinds of features which can effectively distinguish different levels of cataract. One is high-level features extracted from residual network (ResNet18). The other is texture features extarcted by gray level co-occurrence matrix (GLCM). Then a frame is proposed to automatically grade cataract by the extracted features. In the frame, two support vector machine (SVM) classifiers are used as base-learners to obtain the probability outputs of each fundus image, and fully connected neural network (FCNN) are used as meta-learner to output the final classification result, which consists of two fully-connected layers. RESULT The accuracy of six-level grading achieved by the proposed method is up to 92.66% on average, the highest of which reaches 93.33%. The proposed method achieves 94.75% accuracy on four-level grading for cataract, which is at least 1.75% higher than those of the exiting methods. CONCLUSIONS Six-category cataract classification algorithm show that Multi-feature & Stacking proposed in this paper helps achieve higher grading performance and lower volatility than grading using high-level features and texture features respectively. We also apply our algorithm into four-level cataract grading system and it shows higher accuracy compared with previous reports.

Keywords: methods based; cataract grading; level; cataract; automatic cataract; grading methods

Journal Title: Computer methods and programs in biomedicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.