LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiscale spatial gradient features for 18F-FDG PET image-guided diagnosis of Alzheimer's disease

Photo by codioful from unsplash

BACKGROUND AND OBJECTIVE 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) is one of the imaging biomarkers to diagnose Alzheimer's Disease (AD). In 18F-FDG PET images, the changes of voxels' intensities reflect… Click to show full abstract

BACKGROUND AND OBJECTIVE 18F-FluoroDeoxyGlucose Positron Emission Tomography (18F-FDG PET) is one of the imaging biomarkers to diagnose Alzheimer's Disease (AD). In 18F-FDG PET images, the changes of voxels' intensities reflect the differences of glucose rates, therefore voxel intensity is usually used as a feature to distinguish AD from Normal Control (NC), or at earlier stage to distinguish between progressive and stable Mild Cognitive Impairment (pMCI and sMCI). In this paper, 18F-FDG PET images are characterized in an alternative way-the spatial gradient, which is motivated by the observation that the changes of 18F-FDG rates also cause gradient changes. METHODS We improve Histogram of Oriented Gradient (HOG) descriptor to quantify spatial gradients, thereby achieving the goal of diagnosing AD. First, the spatial gradient of 18F-FDG PET image is computed, and then each subject is segmented into different regions by using an anatomical atlas. Second, two types of improved HOG features are extracted from each region, namely Small Scale HOG and Large Scale HOG, then some relevant regions are selected based on a classifier fed with spatial gradient features. Last, an ensemble classification framework is designed to make a decision, which considers the performance of both individual and concatenated selected regions. RESULTS the evaluation is done on ADNI dataset. The proposed method outperforms other state-of-the-art 18F-FDG PET-based algorithms for AD vs. NC with an accuracy, a sensitivity and a specificity values of 93.65%, 91.22% and 96.25%, respectively. For the case of pMCI vs. sMCI, the three metrics are 75.38%, 74.84% and 77.11%, which is significantly better than most existing methods. Besides, promising results are also achieved for multiple classifications under 18F-FDG PET modality. CONCLUSIONS 18F-FDG PET images can be characterized by spatial gradient features for diagnosing AD and its early stage, and the proposed ensemble framework can enhance the classification performance.

Keywords: gradient features; spatial gradient; 18f fdg; fdg pet

Journal Title: Computer methods and programs in biomedicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.