LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging

Photo from wikipedia

BACKGROUND AND OBJECTIVE Accurate assessment of geographic atrophy (GA) is critical for diagnosis and therapy of non-exudative age-related macular degeneration (AMD). Herein, we propose a novel GA segmentation framework for… Click to show full abstract

BACKGROUND AND OBJECTIVE Accurate assessment of geographic atrophy (GA) is critical for diagnosis and therapy of non-exudative age-related macular degeneration (AMD). Herein, we propose a novel GA segmentation framework for spectral-domain optical coherence tomography (SD-OCT) images that employs synthesized fundus autofluorescence (FAF) images. METHODS An en-face OCT image is created via the restricted sub-volume projection of three-dimensional OCT data. A GA region-aware conditional generative adversarial network is employed to generate a plausible FAF image from the en-face OCT image. The network balances the consistency between the entire synthesize FAF image and the lesion. We use a fully convolutional deep network architecture to segment the GA region using the multimodal images, where the features of the en-face OCT and synthesized FAF images are fused on the front-end of the network. RESULTS Experimental results for 56 SD-OCT scans with GA indicate that our synthesis algorithm can generate high-quality synthesized FAF images and that the proposed segmentation network achieves a dice similarity coefficient, an overlap ratio, and an absolute area difference of 87.2%, 77.9%, and 11.0%, respectively. CONCLUSION We report an automatic GA segmentation method utilizing synthesized FAF images. SIGNIFICANCE Our method is effective for multimodal segmentation of the GA region and can improve AMD treatment.

Keywords: oct images; network; segmentation; oct; synthesized fundus; geographic atrophy

Journal Title: Computer methods and programs in biomedicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.