LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ocular biomechanics due to ground blast reinforcement.

Photo from wikipedia

BACKGROUND AND OBJECTIVE Bomb blast injuries exerts a shearing force on the air-tissue interfaces, causing devastating ocular injury from the blast wave. Improvised explosive devices (IEDs) are usually placed at… Click to show full abstract

BACKGROUND AND OBJECTIVE Bomb blast injuries exerts a shearing force on the air-tissue interfaces, causing devastating ocular injury from the blast wave. Improvised explosive devices (IEDs) are usually placed at different heights from the ground to induce more severe injury through ground blast reinforcement (GBR). However, there is still a lack of knowledge of the role of GBR and IED height from the ground on ocular biomechanics, and how they can affect the intraocular pressure (IOP) in the eye. This study aimed to estimate the IOP due to frontal IED explosion at different heights from the ground using a fluid-structure interaction model with and without GBR effects. METHODS A 2 kg IED was placed within 5 m of the victim at 5 different heights from the ground, including 0, 0.42, 0.85, 1.27, and 1.70 m. Two different blast formulations were used to simulate the IED explosion: (a) spherical airburst, with no amplification of the initial shock wave due to interaction with the ground-surface, and (b) hemispherical surface-burst, where the initial blast wave is immediately reflected and reinforced by the ground (GBR). RESULTS Results revealed that the blast wave due to GBR reaches to the skull prior to the IED blast itself. The GBR also reached to the skull ∼ 0.6 ms earlier when the IED was on the ground compared to the height of 1.70 m. The highest and lowest IOPs of ∼ 17,000 and ∼ 15,000 mmHg were observed at the IED heights of 1.70 and 0 m from the ground considering GBR. However, when the role of the GBR is ignored, IOP of ∼ 9,000 mmHg was observed regardless of the IED height from the ground. The deformation in the apex of the cornea was higher when considering the GBR (∼ 0.75 cm) versus no GBR (∼ 0.65 cm). Considering GBR led to higher stresses and strains in the sclera. CONCLUSIONS When the role of GBR was ignored, the results showed similar patterns and magnitudes of stresses and deformations in the skull and eye regardless of the height of the IED from the ground, which was not the case when GBR was considered. The findings of this study suggest the critical role of GBR in ocular blast simulations.

Keywords: ground; heights ground; biomechanics; ground blast; gbr

Journal Title: Computer methods and programs in biomedicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.