LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

First-principles analysis of structural stability, electronic and phonon transport properties of lateral MoS2-WX2 heterostructures

Photo from wikipedia

Abstract We performed first-principles-based methods to study the structural stability, electronic and phonon transport properties of lateral transition metal dichalcogenides. Specifically, we focused on the interface at the MoS2-WX2 heterostructures,… Click to show full abstract

Abstract We performed first-principles-based methods to study the structural stability, electronic and phonon transport properties of lateral transition metal dichalcogenides. Specifically, we focused on the interface at the MoS2-WX2 heterostructures, where X = S or Se. The structures underwent pseudo uniaxial strain testing for compression and tension from 0 to 10% at 2% intervals. The electronic and phonon densities of states were calculated at each interval in comparison with the unstrained structure. Computational results provide insight into the effect of uniaxial strain on structure, electronic and phonon transport processes, causing a crucial impact of use of the materials in electronic devices. In addition, combining the calculated force constants with the atomistic Green's function method reveals interfacial thermal transport at the heterostructure and its underlying phonon mechanisms.

Keywords: phonon transport; first principles; electronic phonon; structural stability; phonon

Journal Title: Computational Condensed Matter
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.