Abstract Cesium lead halide perovskites have been subject to intense investigation, mostly because of their potential to be used in optoelectronic device applications. However, regarding the need for nanoscale materials… Click to show full abstract
Abstract Cesium lead halide perovskites have been subject to intense investigation, mostly because of their potential to be used in optoelectronic device applications. However, regarding the need for nanoscale materials in forthcoming nanotechnology applications, understanding of how the characteristic properties of these perovskite crystals are modified through dimensional crossover is essential. In this study, thickness-dependence of the structural, electronic and vibrational properties of orthorhombic CsPbI3, which is one of the most stable phase at room temperature, is investigated by means of state-of-the-art first-principles calculations. Our results show that (i) bilayers and monolayers of CsPbI3 can be stabilized in orthorhombic crystal symmetry, (ii) among; the possible ultra-thin perovskites only structures with CsI-terminated surface are dynamically stable (iii) electronic band gap increases with decrease in perovskite thickness due to quantum size effect and (iv) reflectivity and transmissivity of the orthorhombic CsPbI3 can be tuned by varying the thickness that modifies the electron confinement.
               
Click one of the above tabs to view related content.