LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Release Kinetics from Nano-Inclusion-Based and Affinity-Based Hydrogels: A Comparative Study

Photo by aaronburden from unsplash

Abstract In this study, we compare the release mechanisms from nanocomposite hydrogels. Liposomes made of different compositions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC), nanogels made of chitosan-hyaluronic acid association and… Click to show full abstract

Abstract In this study, we compare the release mechanisms from nanocomposite hydrogels. Liposomes made of different compositions of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC), nanogels made of chitosan-hyaluronic acid association and crosslinked nanogels made of N-isopropylacrylamide (NIPAM) and different ratios of methacrylic acid (MAA) were embedded in acrylamide hydrogels with a model drug, either sulforhodamine B or rhodamine 6G. Liposomes demonstrated the capacity to release their payload over 10 days while NIPAM nanogels and chitosan nanogels released within one or two days. We found that liposomes embedded in hydrogels presented two distinctive release mechanisms, a diffusive burst and a slower “sub-diffusive” release. Both nanogels on the other side presented no observable nor defined affinity-based release mechanism due to presence of salts, completely screening electrostatic interactions. The present work highlights critical points related to the release mechanisms from nanocomposite hydrogels as drug delivery devices or as biomedical tools for tissue engineering or regenerative medicine.

Keywords: release kinetics; release mechanisms; study; affinity based; release

Journal Title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.