LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface modified liquid crystal droplets as an optical probe for the detection of bile acids in microfluidic channels

Abstract We report the surface modification of 4-n-pentyl-4’-cyanobiphenyl (5CB) droplets in aqueous solution by the adsorption of sulfated β-CD/tetradecyl sulfate sodium (SC14S) complexes at the 5CB-aqueous interface, followed by the… Click to show full abstract

Abstract We report the surface modification of 4-n-pentyl-4’-cyanobiphenyl (5CB) droplets in aqueous solution by the adsorption of sulfated β-CD/tetradecyl sulfate sodium (SC14S) complexes at the 5CB-aqueous interface, followed by the coating of poly(diallyldimethylammonium chloride) (PDADMAC) through electrostatic interaction. The PDADMAC/sulfate β-CD/SC14S complex-coated 5CB droplets are highly stable in aqueous solution. We show that bile acids are able to penetrate into the PDADMAC coating and displace the SC14S from the cavity of the β-CD immobilized at the surface of the 5CB droplets through the competitive host-guest recognition, consequently inducing the radial-to-bipolar configuration transition of the 5CB droplets. The integration of PDADMAC/sulfate β-CD/SC14S complex-coated 5CB droplets in microfluidic channels allows the selective detection of bile acids in a small sample volume (1 μL) in the presence of ascorbic acid, uric acid, creatinine and urea by observing the configuration transition of the 5CB droplets. The detection limit of the miniaturized 5CB droplet-based sensor platform for bile acids can be tuned by the number density of 5CB droplets.

Keywords: 5cb droplets; bile acids; microfluidic channels; pdadmac; sc14s; detection bile

Journal Title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.