LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

pH-responsive self-healing anticorrosion coatings based on benzotriazole-containing zeolitic imidazole framework

Photo from wikipedia

Abstract Utilization of self-healing nanocontainers with corrosion inhibitors is an efficient strategy for protecting metals from corrosion. However, self-healing coatings require the rapid release of these corrosion inhibitors to achieve… Click to show full abstract

Abstract Utilization of self-healing nanocontainers with corrosion inhibitors is an efficient strategy for protecting metals from corrosion. However, self-healing coatings require the rapid release of these corrosion inhibitors to achieve an on-demand barrier on metal surface while avoiding unwanted leakage before the protective coatings are damaged. Herein, well-defined ZIF-7@BTA nanoparticles with approximately 30 wt% benzotriazole inhibitors are prepared via a ligand exchange approach. The as-synthesized ZIF-7@BTA nanoparticles can rapidly release the BTA inhibitor onto scratched areas on metal surfaces, providing 99.4% inhibition efficiency under acidic conditions. Moreover, only limited inhibitor of BTA molecules was leached out (less than 4%) in a neutral environment. Furthermore, the ZIF-7@BTA nanoparticles were further distributed in the polymer matrix to prepare the self-healing anticorrosion coatings for corrosion resistance enhancement in an acidic environment. Electrochemical impedance spectroscopy (EIS) analysis was utilized to characterize the corrosion resistance.

Keywords: anticorrosion coatings; corrosion; self healing; healing anticorrosion; self

Journal Title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.