LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preparation of Phosphorus-containing Porous Carbon by Direct Carbonization for Acetone Adsorption

Photo from wikipedia

Abstract The surface functional groups present in activated carbon have been regarded to take on an important role in VOCs adsorption. Herein, phosphorus-containing porous carbons (PPCs) were prepared by the… Click to show full abstract

Abstract The surface functional groups present in activated carbon have been regarded to take on an important role in VOCs adsorption. Herein, phosphorus-containing porous carbons (PPCs) were prepared by the direct carbonization of potassium phytate and were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectrum, specific surface area and pore analysis, and X-ray photoelectron spectroscopy (XPS). The synergistic effect of phosphorous-containing functional groups and specific surface area on acetone adsorption was investigated by experiments and the underlying mechanism was studied by density functional theory (DFT) calculations. The results showed that PPCs carbonized at 900 ℃ show a high acetone capacity of 6.62 mmol/g at 18 kPa due to a high specific surface area (1060.99 m2 g-1) and desirable phosphorus content (1.32%). Furthermore, the adsorption behaviour of phosphorus-containing functional groups (C-O-P, C3-P, C3-P=O and C-P-O) was clarified by DFT calculations, focusing on the three parameters of adsorption energy, adsorption equilibrium distance and charge transfer amount. The DFT calculations verified that the affinity between the carbon substrate and acetone molecule was significantly enhanced by adding different phosphorus-containing functional groups.

Keywords: adsorption; carbon; acetone; phosphorus containing; phosphorus; functional groups

Journal Title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.