LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Amino-functionalized MXenes for efficient removal of Cr(VI)

Photo by sickhews from unsplash

Abstract Amino-functionalized MXenes (NH2-Ti3C2Tx) were constructed with the feature of strong adsorption but also reduction ability for Cr(VI) ions in aqueous solution, via in situ polymerization of (3-aminopropyl)triethoxysilane (APTES) onto… Click to show full abstract

Abstract Amino-functionalized MXenes (NH2-Ti3C2Tx) were constructed with the feature of strong adsorption but also reduction ability for Cr(VI) ions in aqueous solution, via in situ polymerization of (3-aminopropyl)triethoxysilane (APTES) onto the surface of multilayer Ti3C2Tx. Amino groups and Ti3C2Tx nanosheets exhibit synergistic effects in the adsorption and reduction of Cr(VI) anions. The maximum adsorption capacities for Cr(VI) onto NH2-Ti3C2Tx-0.5 calculated by Langmuir model are 107.4 mg/g. Meanwhile, Ti(Ⅱ) species and -NH3+ are individually oxidized into Ti(Ⅳ) species and NO3− during the removal of Cr(VI). The NH2-Ti3C2Tx-0.5 nanosheets exhibit high selectivity and reusability for Cr(VI) removal. Density functional theory calculations illustrate that the synergy between Ti and N remarkably boost the binding energy of MXene toward Cr(VI) along with the electron density on MXene surface. This work provides deep insights into functionalized MXene nanosheets in the fields of heavy metal remediation.

Keywords: amino functionalized; mxenes efficient; nh2 ti3c2tx; removal; functionalized mxenes

Journal Title: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.