LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Autoignition and flame propagation in non-premixed MILD combustion

Photo by joshuanewton from unsplash

Abstract Direct Numerical Simulation (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to gather insights on autoignition and flame propagation in MILD combustion. Unlike in conventional… Click to show full abstract

Abstract Direct Numerical Simulation (DNS) data of Moderate or Intense Low-oxygen Dilution (MILD) combustion are analysed to gather insights on autoignition and flame propagation in MILD combustion. Unlike in conventional combustion, the chemical reactions occur over a large portion of the computational domain. The presence of ignition and flame propagation and their coexistence are studied through spatial and statistical analyses of the convective, diffusive and chemical effects in the species transport equations. Autoignition is observed in regions with lean mixtures because of their low ignition delay times and these events propagate into richer mixtures either as a flame or ignition. This is found to be highly dependent on the mixture fraction length scale, lZ, and autoignition is favoured when lZ is small.

Keywords: mild combustion; flame propagation; flame; autoignition; combustion

Journal Title: Combustion and Flame
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.