Abstract The numerical study of an academic lab-scale spray burner using Large Eddy Simulation coupled with a Discrete Particle Simulation is presented. The objectives are first, to validate current turbulent… Click to show full abstract
Abstract The numerical study of an academic lab-scale spray burner using Large Eddy Simulation coupled with a Discrete Particle Simulation is presented. The objectives are first, to validate current turbulent combustion modeling approach for two-phase flames, and second, to bring new insight on two-phase flame structure in a complex flow, representative of real configurations. The comparison with the experiment shows a good quantitative prediction of the velocity field of the gas and the liquid phases, in both non-reacting and reacting cases. Experimental and numerical results of the spray flame are also in good agreement. The detailed study of the interaction between the flame front and the droplets shows that both single droplet and group combustion regimes occur in the present configuration. These regimes are investigated from the numerical and physical points of view, highlighting the necessity to further investigate their possible importance for the modeling of two-phase combustion.
               
Click one of the above tabs to view related content.