LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PAHs controlling soot nucleation in 0.101—0.811MPa ethylene counterflow diffusion flames

Photo from wikipedia

Abstract On the heels of a recent study in an atmospheric pressure ethylene diffusion flame in which the transition from parent fuel molecule to Polycyclic Aromatic Hydrocarbons (PAHs) and, eventually,… Click to show full abstract

Abstract On the heels of a recent study in an atmospheric pressure ethylene diffusion flame in which the transition from parent fuel molecule to Polycyclic Aromatic Hydrocarbons (PAHs) and, eventually, soot was studied by spatially resolved measurements of PAH concentrations and soot quantities, we extended the focus to diffusion flames with self- similar structure in the 0.101–0.811 MPa pressure range. To that end, we complemented pyrometry based measurements of soot volume fraction with light scattering measurements that, once corrected for beam steering, yielded soot particle size and number concentration profiles. A chemistry model, that had been validated for all species up to 3 ring aromatics in one of the flames investigated at each pressure and up to 4-rings for the flame at atmospheric pressure, was used to compare profiles of chemical species to those of soot quantities. Further analysis yielded the assessment of number nucleation rates of soot and their comparison to the dimerization rates of PAHs. Soot nucleation rate is consistent only with the dimerization of one- and two-ring PAHs, an observation that confirms findings in the atmospheric pressure flame. Changes in pressure and temperature have a progressively larger impact on the concentration of aromatics of increasingly larger molecular weight and, even more so, on soot volume fraction and nucleation rate. A four-fold increase in pressure from 0.101 MPa to 0.405 MPa increases the soot nucleation rate and PAH dimerization rate in flames with constant peak temperature, which is primarily a concentration effect on bimolecular collision rates; a similar but less pronounced effect is observed in the higher (0.405–0.811 MPa) pressure range. Changes in pressure and temperature tend to be progressively more consequential on aromatics of increasing molecular weight and soot.

Keywords: nucleation; ethylene; pressure; soot nucleation; diffusion flames

Journal Title: Combustion and Flame
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.