LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An interatomic potential for simulation of defects and phase change of zirconium

Photo from wikipedia

Abstract We introduce a long-range interaction analytical embedded atom method (namely la-EAM) interatomic potential, which has been developed by fitting the lattice constants, cohesive energy, mono-vacancy formation energy and elastic… Click to show full abstract

Abstract We introduce a long-range interaction analytical embedded atom method (namely la-EAM) interatomic potential, which has been developed by fitting the lattice constants, cohesive energy, mono-vacancy formation energy and elastic constants of α-Zirconium. We validate this la-EAM potential by extensive investigation of the bulk, surface, and defect properties of Zirconium using molecular dynamics simulations compared with available experiments and theoretical results. We examine the lattice constants, cohesive energy, elastic constants, phonon dispersion curves of α-, β-, and ω-Zirconium and find a good agreement with available experiments. We have studied the 0D (zero-dimension) defects including vacancies and self-interstitial atoms, 1D defects (dislocations), 2D defects including surface and stacking fault, and 3D bulk properties. Furthermore, our phase transformation energy barrier of α → ω agrees with the experimental observation. The success of our potential could attribute to the correctly accounting for the long-range interactions of the Zr atoms. Our results suggest that the developed la-EAM potential of Zr is useful in molecular dynamics simulations of bulk, surface and defect properties and phase transitions of Zirconium at various temperatures and pressures.

Keywords: interatomic potential; energy; potential simulation; zirconium; simulation defects

Journal Title: Computational Materials Science
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.