LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel bisection method based algorithm to quantify interphase in epoxy alumina nanocomposites

Photo from wikipedia

Abstract Polymer nanocomposites (PNCs) are emerging materials for the future due to their superior material characteristics with respect to base polymer and composites formed with traditional micro sized fillers. Researchers… Click to show full abstract

Abstract Polymer nanocomposites (PNCs) are emerging materials for the future due to their superior material characteristics with respect to base polymer and composites formed with traditional micro sized fillers. Researchers are concordant in attributing the improved properties of PNCs to large proportion of polymer-filler interaction zone (or an interphase). However, literature is indeed scanty to characterize interphase in terms of its size and properties. To come into possession of fine-tuned material properties through optimal use of naofillers, characterization of interphase is necessary. In this work, we propose a novel algorithm to characterize interphase in terms of its permittivity and thickness. Epoxy resin (LY556) is used as base polymer and aluminum oxide (Al2O3, average particle size = 50 nm) is used as filler material. Filler particles are surface treated using silane. Dispersion of nano filler in polymer matrix is verified using scanning electron microscopy (SEM). Dielectric spectroscopic measurements are carried out to measure permittivity over a frequency range of 10-2 to 107 Hz. A finite element based numerical model is developed to estimate effective permittivity of composites for different values of assumed interphase parameters (i.e. thickness and permittivity). Bisection method based algorithm is devised to assign actual thickness and permittivity to interphase based on the best fit of experimental and simulated results.

Keywords: method based; permittivity; based algorithm; interphase; polymer; bisection method

Journal Title: Computational Materials Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.