LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical and thermoelectric properties of graphenylene and octagraphene nanotubes from first-principles calculations

Photo from archive.org

Abstract Optical and thermoelectric properties of graphenylene and octagraphene nanotubes (GrNTs and OcNTs) are studied by means of first-principles calculations. The absorption coefficient, optical conductivity, and complex refractive index are… Click to show full abstract

Abstract Optical and thermoelectric properties of graphenylene and octagraphene nanotubes (GrNTs and OcNTs) are studied by means of first-principles calculations. The absorption coefficient, optical conductivity, and complex refractive index are calculated using the density functional theory and the Kubo–Greenwood formula. It is shown that the studied structures effectively absorb electromagnetic waves of the visible range, and these nanotubes are promising for the development of electromagnetic radiation sensors. Using the nonequilibrium Green functions method, transport coefficients and thermoelectric figure of merit are estimated and analyzed. The electronic and thermal characteristics of GrNTs and OcNTs are compared with the characteristics of graphene nanotubes.

Keywords: thermoelectric properties; properties graphenylene; octagraphene nanotubes; optical thermoelectric; first principles; graphenylene octagraphene

Journal Title: Computational Materials Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.