LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An approach based on random sampling and density functional theory to identify highly stable structures of ABX3 compounds

Photo from wikipedia

Abstract First-principle screening of the vast material space is one of the recently growing approaches to discover novel materials. However, without some sort of prior knowledge of materials’ structures, this… Click to show full abstract

Abstract First-principle screening of the vast material space is one of the recently growing approaches to discover novel materials. However, without some sort of prior knowledge of materials’ structures, this can be computationally very expensive, complex, and inconclusive. Herein, we present an approach to predict the highly stable structures of ABX3 compounds using density functional theory (DFT) combined with proper random sampling and utilizing the precision library of Standard Solid-State Pseudopotentials (SSSP). The considered reduced material space is for 18 halide compounds where A = Cs+, K+, and Rb+; B = Pb2+ and Sn2+; and halogen X = Cl−, I−, and Br−. Initially, 40-atom supercells are assembled in the high symmetrical phase where the lattice parameters are determined from their ionic radii. Then, 10 random samples of each compound are constructed where atomic positions are randomly displaced from the high symmetrical phase. All these samples are then used as initial guesses to find stable phases. The phase with the lowest energy is considered the highly stable one. By comparing the results with some recent vigorous computational and experimental reports, the presented approach demonstrates good agreement. It illustrates adequate level of accuracy and computational efficiency to be considered for high-throughput calculations.

Keywords: density functional; structures abx3; stable structures; abx3 compounds; highly stable; functional theory

Journal Title: Computational Materials Science
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.