LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative homology model building and docking evaluation for RNA III inhibiting peptide of Multi drug resistant Staphylococcus aureus strain MRSA252

Photo from wikipedia

Since last several years, infection caused by Staphylococcus aureus is challenging to cure using conventional antibiotics. The organism is a Gram-positive bacterial pathogen that can cause serious diseases not only… Click to show full abstract

Since last several years, infection caused by Staphylococcus aureus is challenging to cure using conventional antibiotics. The organism is a Gram-positive bacterial pathogen that can cause serious diseases not only in humans but also in animals, such as various skin infections, pneumonia, endocarditis and toxin shock syndrome. This bacterium causes such diseases by producing macromolecules such as hemolysins, enterotoxins, proteases and toxic shock syndrome toxin (TSST-1). This organism had developed the multidrug resistance by acquiring MEC-A gene. This account for made organism to come into the category of Superbug. Several studies showed that, the toxin production is induced by AIP and RAP via the phosphorylation of TRAP. TRAP is a 21 kDa protein and was believed to be associated with the membrane via SvrA Phosphoamino acid analysis revealed that TRAP is histidine phosphorylated in a signal transduction pathway that is activated by RAP. The inhibition of TRAP could be done by RIP (RNAIII-inhibiting peptide). The structure for RIP is still undiscovered to be used as inhibitor. Present work has been carried out to get the structural insight with various online and offline homology modeling techniques such as SWISS-MODEL, MODBASE, GENO3D, CPHmodels and I-TASSER for getting unknown structural information target of RNAIII-activating protein from Staphylococcus aureus strain MRSA252 origin for their future exploration as a target in drug discovery process against MRSA.

Keywords: staphylococcus aureus; aureus strain; model; strain mrsa252; inhibiting peptide; homology

Journal Title: Computational biology and chemistry
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.