LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition

Photo by justinchrn from unsplash

We present a data driven approach to classify ictal (epileptic seizure) and non-ictal EEG signals using the multivariate empirical mode decomposition (MEMD) algorithm. MEMD is a multivariate extension of empirical… Click to show full abstract

We present a data driven approach to classify ictal (epileptic seizure) and non-ictal EEG signals using the multivariate empirical mode decomposition (MEMD) algorithm. MEMD is a multivariate extension of empirical mode decomposition (EMD), which is an established method to perform the decomposition and time-frequency (T-F) analysis of non-stationary data sets. We select suitable feature sets based on the multiscale T-F representation of the EEG data via MEMD for the classification purposes. The classification is achieved using the artificial neural networks. The efficacy of the proposed method is verified on extensive publicly available EEG datasets.

Keywords: eeg signals; empirical mode; decomposition; mode decomposition

Journal Title: Computers in biology and medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.