LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Conceptual data sampling for breast cancer histology image classification

Photo from wikipedia

Data analytics have become increasingly complicated as the amount of data has increased. One technique that is used to enable data analytics in large datasets is data sampling, in which… Click to show full abstract

Data analytics have become increasingly complicated as the amount of data has increased. One technique that is used to enable data analytics in large datasets is data sampling, in which a portion of the data is selected to preserve the data characteristics for use in data analytics. In this paper, we introduce a novel data sampling technique that is rooted in formal concept analysis theory. This technique is used to create samples reliant on the data distribution across a set of binary patterns. The proposed sampling technique is applied in classifying the regions of breast cancer histology images as malignant or benign. The performance of our method is compared to other classical sampling methods. The results indicate that our method is efficient and generates an illustrative sample of small size. It is also competing with other sampling methods in terms of sample size and sample quality represented in classification accuracy and F1 measure.

Keywords: technique; data sampling; cancer histology; breast cancer; histology

Journal Title: Computers in biology and medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.