LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic liver vessel segmentation using 3D region growing and hybrid active contour model

Photo from wikipedia

This paper proposes a new automatic method for liver vessel segmentation by exploiting intensity and shape constraints of 3D vessels. The core of the proposed method is to apply two… Click to show full abstract

This paper proposes a new automatic method for liver vessel segmentation by exploiting intensity and shape constraints of 3D vessels. The core of the proposed method is to apply two different strategies: 3D region growing facilitated by bi-Gaussian filter for thin vessel segmentation, and hybrid active contour model combined with K-means clustering for thick vessel segmentation. They are then integrated to generate final segmentation results. The proposed method is validated on abdominal computed tomography angiography (CTA) images, and obtains an average accuracy, sensitivity, specificity, Dice, Jaccard, and RMSD of 98.2%, 68.3%, 99.2%, 73.0%, 66.1%, and 2.56 mm, respectively. Experimental results show that our method is capable of segmenting complex liver vessels with more continuous and complete thin vessel details, and outperforms several existing 3D vessel segmentation algorithms.

Keywords: segmentation; region growing; liver vessel; vessel segmentation

Journal Title: Computers in biology and medicine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.