LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images

Photo from wikipedia

BACKGROUND Clinical histological grading of hepatocellular carcinoma (HCC) differentiation is of great significance in clinical diagnoses, treatments, and prognoses. However, it is challenging for radiologists to evaluate HCC gradings from… Click to show full abstract

BACKGROUND Clinical histological grading of hepatocellular carcinoma (HCC) differentiation is of great significance in clinical diagnoses, treatments, and prognoses. However, it is challenging for radiologists to evaluate HCC gradings from medical images. PURPOSE In this study, a novel deep neural network was developed by combining the squeeze-and-excitation networks (SENets) in a three-dimensional (3D) densely connected convolutional network (DenseNet), which is referred to as a 3D SE-DenseNet, for the classification of HCC grading using enhanced clinical magnetic resonance (MR) images obtained from two different clinical centers. METHOD In the proposed architecture, the SENet was added as an additional layer between the dense blocks of the 3D DenseNet, to mitigate the impact of feature redundancy. For the HCC grading task, the 3D SE-DenseNet was trained after data augmentation, and it outperformed the 3D DenseNet based on the clinical dataset. RESULTS The quantitative evaluations of the 3D SE-DenseNet on a two-class HCC grading task were conducted based on the dataset, which included 213 samples of the dynamic enhanced MR images. The proposed 3D SE-DenseNet demonstrated an accuracy of 83%, when compared with the 72% accuracy of the 3D DenseNet. CONCLUSION Owing to the advantage of useful automatic feature learning by the SE layer, the 3D SE-DenseNet can simultaneously handle useful feature enhancement and superfluous feature suppression. The quantitative experiments confirm the excellent performance of the 3D SE-DenseNet in the evaluation of the HCC grading.

Keywords: hepatocellular carcinoma; hcc; hcc grading; dynamic enhanced; grading hepatocellular; densenet

Journal Title: Computers in biology and medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.