LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

TyG-er: An ensemble Regression Forest approach for identification of clinical factors related to insulin resistance condition using Electronic Health Records

Photo from wikipedia

BACKGROUND Insulin resistance is an early-stage deterioration of Type 2 diabetes. Identification and quantification of insulin resistance requires specific blood tests; however, the triglyceride-glucose (TyG) index can provide a surrogate… Click to show full abstract

BACKGROUND Insulin resistance is an early-stage deterioration of Type 2 diabetes. Identification and quantification of insulin resistance requires specific blood tests; however, the triglyceride-glucose (TyG) index can provide a surrogate assessment from routine Electronic Health Record (EHR) data. Since insulin resistance is a multi-factorial condition, to improve its characterisation, this study aims to discover non-trivial clinical factors in EHR data to determine where the insulin-resistance condition is encoded. METHODS We proposed a high-interpretable Machine Learning approach (i.e., ensemble Regression Forest combined with data imputation strategies), named TyG-er. We applied three different experimental procedures to test TyG-er reliability on the Italian Federation of General Practitioners dataset, named FIMMG_obs dataset, which is publicly available and reflects the clinical use-case (i.e., not all laboratory exams are prescribed on a regular basis over time). RESULTS Results detected non-conventional clinical factors (i.e., uricemia, leukocytes, gamma-glutamyltransferase and protein profile) and provided novel insight into the best combination of clinical factors for detecting early glucose tolerance deterioration. The robustness of these extracted clinical factors was confirmed by the high agreement (from 0.664 to 0.911 of Lin's correlation coefficient (rc)) of the TyG-er approach among different experimental procedures. Moreover, the results of the three experimental procedures outlined the predictive power of the TyG-er approach (up to a mean absolute error of 5.68% and rc=0.666,p<.05). CONCLUSIONS The TyG-er approach is able to carry information about the identification of the TyG index, strictly correlated with the insulin-resistance condition, while extracting the most relevant non-glycemic features from routine data.

Keywords: insulin; condition; clinical factors; insulin resistance; approach

Journal Title: Computers in biology and medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.