LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automated segmentation of villi in histopathology images of placenta

Photo from wikipedia

PURPOSE Manual analysis of clinical placenta pathology samples under the microscope is a costly and time-consuming task. Computer-aided diagnosis might offer a means to obtain fast and reliable results and… Click to show full abstract

PURPOSE Manual analysis of clinical placenta pathology samples under the microscope is a costly and time-consuming task. Computer-aided diagnosis might offer a means to obtain fast and reliable results and also substantially reduce inter- and intra-rater variability. Here, we present a fully automated segmentation method that is capable of distinguishing the complex histological features of the human placenta (i.e., the chorionic villous structures). METHODS The proposed pipeline consists of multiple steps to segment individual placental villi structures in hematoxylin and eosin (H&E) stained placental images. Artifacts and undesired objects in the histological field of view are detected and excluded from further analysis. One of the challenges in our new algorithm is the detection and segmentation of touching villi in our dataset. The proposed algorithm uses the top-hat transformation to detect candidate concavities in each structure, which might represent two distinct villous structures in close proximity. The detected concavities are classified by extracting multiple features from each candidate concavity. Our proposed pipeline is evaluated against manual segmentations, confirmed by an expert pathologist, on 12 scans from three healthy control patients and nine patients diagnosed with preeclampsia, containing nearly 5000 individual villi. The results of our method are compared to a previously published method for villi segmentation. RESULTS Our algorithm detected placental villous structures with an F1 score of 80.76% and sensitivity of 82.18%. These values are substantially better than the previously published method, whose F1 score and sensitivity are 65.30% and 55.12%, respectively. CONCLUSION Our method is capable of distinguishing the complex histological features of the human placenta (i.e., the chorionic villous structures), removing artifacts over a large histopathology sample of human placenta, and (importantly) account for touching adjacent villi structures. Compared to existing methods, our developed method yielded high accuracy in detecting villi in placental images.

Keywords: villous structures; histopathology; method; automated segmentation; villi

Journal Title: Computers in biology and medicine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.