LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Obstructive sleep apnea detection using discrete wavelet transform-based statistical features

Photo from wikipedia

MOTIVATION AND OBJECTIVE Obstructive sleep apnea (OSA) is a sleep disorder identified in nearly 10% of middle-aged people, which deteriorates the normal functioning of human organs, notably that of the… Click to show full abstract

MOTIVATION AND OBJECTIVE Obstructive sleep apnea (OSA) is a sleep disorder identified in nearly 10% of middle-aged people, which deteriorates the normal functioning of human organs, notably that of the heart. Furthermore, untreated OSA is associated with increased hypertension, diabetes, stroke, and cardiovascular diseases, thereby increasing the mortality risk. Therefore, early identification of sleep apnea is of significant interest. METHOD In this paper, an automated approach for OSA diagnosis using a single-lead electrocardiogram (ECG) has been reported. Three sets of features, namely moments of power spectrum density (PSD), waveform complexity measures, and higher-order moments, are extracted from the 1-min segmented ECG subbands obtained from discrete wavelet transform (DWT). Later, correlation-based feature selection with particle swarm optimization (PSO) search strategy is employed for getting an optimum feature vector. This process retained 18 significant features from initially computed 32 features. Finally, the acquired feature set is fed to different classifiers including, linear discriminant analysis, nearest neighbors, support vector machine, and random forest to perform per segment classification. RESULTS Experiments on the publicly available physionet single-lead ECG dataset show that the proposed approach using the random forest classifier effectively discriminates normal and OSA ECG signals. Specifically, our method achieved an accuracy of 89% and 90%, with 50-50 hold-out validation and 10-fold cross-validation, respectively. Besides, in both these validation scenarios, our method obtained 96% of the area under ROC. Importantly, our proposed approach provided better performance results than most of the existing methodologies.

Keywords: apnea; wavelet transform; discrete wavelet; obstructive sleep; sleep apnea

Journal Title: Computers in biology and medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.