LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computer-Aided Diagnosis of Low Grade Endometrial Stromal Sarcoma (LGESS)

Photo by nci from unsplash

Low grade endometrial stromal sarcoma (LGESS) accounts for about 0.2% of all uterine cancer cases. Approximately 75% of LGESS patients are initially misdiagnosed with leiomyoma, which is a type of… Click to show full abstract

Low grade endometrial stromal sarcoma (LGESS) accounts for about 0.2% of all uterine cancer cases. Approximately 75% of LGESS patients are initially misdiagnosed with leiomyoma, which is a type of benign tumor, also known as fibroids. In this research, uterine tissue biopsy images of potential LGESS patients are preprocessed using segmentation and stain normalization algorithms. We then apply a variety of classic machine learning and advanced deep learning models to classify tissue images as either benign or cancerous. For the classic techniques considered, the highest classification accuracy we attain is about 0.85, while our best deep learning model achieves an accuracy of approximately 0.87. These results clearly indicate that properly trained learning algorithms can aid in the diagnosis of LGESS.

Keywords: sarcoma lgess; stromal sarcoma; endometrial stromal; grade endometrial; lgess; low grade

Journal Title: Computers in biology and medicine
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.