LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

S2FLNet: Hepatic steatosis detection network with body shape

Photo from wikipedia

Fat accumulation in the liver cells can increase the risk of cardiac complications and cardiovascular disease mortality. Therefore, a way to quickly and accurately detect hepatic steatosis is critically important.… Click to show full abstract

Fat accumulation in the liver cells can increase the risk of cardiac complications and cardiovascular disease mortality. Therefore, a way to quickly and accurately detect hepatic steatosis is critically important. However, current methods, e.g., liver biopsy, magnetic resonance imaging, and computerized tomography scan, are subject to high cost and/or medical complications. In this paper, we propose a deep neural network to estimate the degree of hepatic steatosis (low, mid, high) using only body shapes. The proposed network adopts dilated residual network blocks to extract refined features of input body shape maps by expanding the receptive field. Furthermore, to classify the degree of steatosis more accurately, we create a hybrid of the center loss and cross entropy loss to compact intra-class variations and separate inter-class differences. We performed extensive tests on the public medical dataset with various network parameters. Our experimental results show that the proposed network achieves a total accuracy of over 82% and offers an accurate and accessible assessment for hepatic steatosis.

Keywords: steatosis; body shape; network; hepatic steatosis

Journal Title: Computers in biology and medicine
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.