LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-strength CNT/Al-Zn-Mg-Cu composites with improved ductility achieved by flake powder metallurgy via elemental alloying

Photo from wikipedia

Abstract The uniform dispersion of carbon nanotubes (CNTs) is usually accompanied by severe grain refinement of Al matrix, which leads to the low ductility of CNT/Al alloy composites. To accommodate… Click to show full abstract

Abstract The uniform dispersion of carbon nanotubes (CNTs) is usually accompanied by severe grain refinement of Al matrix, which leads to the low ductility of CNT/Al alloy composites. To accommodate this dilemma, a flake powder metallurgy route via elemental alloying was proposed to fabricate CNT/Al-Zn-Mg-Cu composites with improved ductility and high strength. CNT/Al flake powders were firstly obtained by ball milling at a low speed to achieve uniform dispersed of CNTs, and then milled with Zn, Mg and Cu elemental flake powders at a high speed to achieve lamellar CNT/Al-Zn-Mg-Cu particles, which were consolidated and homogenized to obtain bulk CNT/Al-Zn-Mg-Cu composites. Compared with the CNT/AA7075 counterparts fabricated by directly using CNTs and atomized AA7075 powders, the CNT/Al-Zn-Mg-Cu composites exhibited improved ductility with high modulus and strength, due to the well-protected and uniformly aligned CNTs, and good dislocation storage capability of the elongated ultrafine grains.

Keywords: strength; improved ductility; cnt composites; metallurgy; cnt

Journal Title: Composites Part A: Applied Science and Manufacturing
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.