LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards “green” viscoelastically prestressed composites: Cellulose fibre reinforcement

Photo from archive.org

Abstract With growing concerns over environmental issues, fibre reinforced composites based on renewable, biodegradable low-cost cellulosic/cellulose fibres increasingly attract interest. This paper reports on the first study to produce viscoelastically… Click to show full abstract

Abstract With growing concerns over environmental issues, fibre reinforced composites based on renewable, biodegradable low-cost cellulosic/cellulose fibres increasingly attract interest. This paper reports on the first study to produce viscoelastically prestressed polymeric matrix composites (VPPMCs) using regenerated cellulose/viscose continuous fibres. The aim was to demonstrate that this prestressing technique could improve the mechanical properties of a cellulose fibre reinforced composite without the need to increase section mass or thickness. By investigating the viscoelastic properties of cellulose yarn, a suitable load was applied to subject the fibres to tensile creep. The load was then released and the loose yarns were moulded into a polyester resin matrix. Following matrix solidification, the viscoelastically recovering fibres imparted compressive stresses to the matrix. The mechanical properties of these cellulose fibre VPPMCs were investigated by tensile, three-point flexural and Charpy impact tests. Under the creep conditions investigated, the VPPMC samples demonstrated up to 20% increase in tensile strength and modulus and a comparable improvement in flexural properties, compared with control (unstressed) counterparts. Nevertheless, the prestress effect reduced impact toughness by ∼30%, by impeding matrix crack formation and promoting fibre fracture. Based on findings from this paper, all-green VPPMCs may be achieved in the future by considering potentially suitable green resins.

Keywords: towards green; prestressed composites; viscoelastically prestressed; properties cellulose; cellulose fibre; green viscoelastically

Journal Title: Composites Part B: Engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.