LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synergetic effect of graphene nanoplatelet, carbon fiber and coupling agent addition on the tribological, mechanical and thermal properties of polyamide 6,6 composites

Photo from wikipedia

Abstract Polyamide 6,6 (PA6,6) is one of the commonly used engineering polymers and it is used for various applications. Moreover, tribological and mechanical performance of PA6,6 can be improved with… Click to show full abstract

Abstract Polyamide 6,6 (PA6,6) is one of the commonly used engineering polymers and it is used for various applications. Moreover, tribological and mechanical performance of PA6,6 can be improved with the addition of fibers or particulates. However, properties of reinforced PA6,6 matrix composites are affected by many factors. Interfacial adhesion between the reinforcement and matrix material is one of these factors and there should be good interfacial adhesion to obtain good ultimate properties. In this study, it was aimed to improve tribological and mechanical properties of carbon fiber reinforced PA6,6 composites by means of improving the fiber-matrix interaction by using graphene nanoplatelet (GNP) and 1,4-phenylene-bis-oxazoline (PBO). Adhesive wear test, tensile test, dynamic mechanical, differential scanning calorimetry and scanning electron microscopy analyses were performed. Consequently, all the test results manifested that CF_0.5GNP_PBO coded composites exhibited improved tribological and mechanical properties among the all composites.

Keywords: addition; graphene nanoplatelet; tribological mechanical; carbon fiber

Journal Title: Composites Part B: Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.