LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ growth of polyvinylpyrrolidone modified Zr-MOFs thin-film nanocomposite (TFN) for efficient dyes removal

Photo from wikipedia

Abstract The major challenges in fabricating excellent thin film nanocomposite (TFN) membranes are the aggregation of the nanofiller and the organic-inorganic incompatibility. In this work, to overcome such challenges, polyvinylpyrrolidone… Click to show full abstract

Abstract The major challenges in fabricating excellent thin film nanocomposite (TFN) membranes are the aggregation of the nanofiller and the organic-inorganic incompatibility. In this work, to overcome such challenges, polyvinylpyrrolidone (PVP) assisted in-situ growth method was utilized to synthesize Zr-MOFs (PVP-UiO-66-NH2). The resultant Zr-MOFs has well dispersibility in water, negatively charged, high surface area and uniform shape. PVP-UiO-66-NH2 was incorporated into polyvinyl alcohol (PVA) aqueous solution and drop-coated on the surface of HPAN supporting layer. The influences of PVP-UiO-NH2 nanofillers on the TFN membranes were systematically studied. Compared with the unfilled TFC membrane, the TFN membranes reveal better hydrophilicity and filtration properties. The optimized membrane (PVP-UiO-66-NH2 content of 0.3 wt%) has a water permeability of 130.9 ± 2.9 L m−2 h−1 MPa−1, remarkable rejection (99.89%∼100%) for four dyes (Congo red, Methyl blue, reactive Black 5 and Direct red 23), low rejection for monovalent salt (5.2%, 6.0% for NaCl and MgCl2) and moderate rejection for bivalent salt (10.2%, 22.3% for MgSO4 and Na2SO4). The membrane also demonstrated a good stability in continuing operation for 50 h. Overall, the prepared membranes show an exciting prospect for dye/salt separation owing to their excellent filtration performance.

Keywords: film nanocomposite; situ growth; thin film; pvp uio; tfn; nanocomposite tfn

Journal Title: Composites Part B: Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.