LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphene type dependence of carbon nanotubes/graphene nanoplatelets polyurethane hybrid nanocomposites: Micromechanical modeling and mechanical properties

Photo from wikipedia

Abstract Micromechanical modeling and mechanical properties of polyurethane (PU) hybrid nanocomposite foams with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were investigated by means of tensile strength, hardness, impact… Click to show full abstract

Abstract Micromechanical modeling and mechanical properties of polyurethane (PU) hybrid nanocomposite foams with multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) were investigated by means of tensile strength, hardness, impact strength and modified Halpin–Tsai equation. Three types of GNPs, with varied flake sizes and specific surface areas (SSA) were utilized to study the effect of GNP types on the synergistic effect of MWCNT/GNP hybrid nanofillers. The results indicate a remarkable synergetic effect between MWCNTs and GNP-1.5 (1:1) with a flake size of 1.5 μm and a higher SSA (750 m2/g), which tensile strength of PU was improved by 43% as compared to 19% for PU/MWCNTs and 17% for PU/GNP-1.5 at 0.25 wt% nanofiller loadings. The synergy was successfully predicted using a unit cell modeling, which the calculated values agree with the experimental results.

Keywords: modeling mechanical; carbon nanotubes; polyurethane hybrid; mechanical properties; graphene nanoplatelets; micromechanical modeling

Journal Title: Composites Part B: Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.