LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A stable, ultrasensitive and flexible substrate integrated from 1D Ag/α-Fe2O3/SiO2 fibers for practical surface-enhanced Raman scattering detection

Photo from archive.org

Abstract Conventionally, the surface-enhanced Raman spectroscopy (SERS) measurement is performed by dispersing noble metal nanoparticles onto the target sample directly or assembling noble metal nanoparticles onto a micro-sized substrate. Despite… Click to show full abstract

Abstract Conventionally, the surface-enhanced Raman spectroscopy (SERS) measurement is performed by dispersing noble metal nanoparticles onto the target sample directly or assembling noble metal nanoparticles onto a micro-sized substrate. Despite it is flourishing, this method is not adequate for various samples, mainly limited by either a defined confinement of the test position or the complex extraction process of the target sample on the irregularly shaped surface, besides the costive materials, complex and uncontrollable fabricating processes. Herein, we demonstrate that the α-Fe2O3 thin film is decorated with Ag nanoparticles constructed on SiO2 fibers as a flexible SERS-active substrate, which yields a functional optical enhancement of the signal at 532 nm laser excitation. It shows a high enhancement factor of 4.71 × 105, ultrahigh sensitivity of 10−15 M, and excellent signal stability with a relative standard deviation (RSD) of 1.22% and reproducibility with a RSD of 0.258%.

Keywords: surface enhanced; enhanced raman; surface; ultrasensitive flexible; stable ultrasensitive; sio2 fibers

Journal Title: Composites Part B: Engineering
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.