LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of elastic modulus mismatch of epoxy/titanium dioxide coated silver nanowire composites on the performance of thermal conductivity

Photo from wikipedia

Abstract The effect of elastic modulus mismatch of epoxy/silver nanowires (epoxy/AgNWs) composites on thermal conductivity was critically evaluated by synthesizing a stiff titanium dioxide (TiO2) coating on the surface of… Click to show full abstract

Abstract The effect of elastic modulus mismatch of epoxy/silver nanowires (epoxy/AgNWs) composites on thermal conductivity was critically evaluated by synthesizing a stiff titanium dioxide (TiO2) coating on the surface of AgNWs (designated as AgNWs@TiO2) with different length/diameter aspect ratio. Compared to epoxy/AgNWs composites, AgNWs@TiO2 could be more uniformly dispersed in epoxy matrix. However, the TiO2 intermediate layer with a higher elastic modulus increased the modulus mismatch with epoxy, exacerbating the interfacial phonon scattering, and the thermal conductivity of the epoxy/AgNWs@TiO2 composites was decreased. Moreover, the epoxy/AgNWs@TiO2 composites possessed enhanced volume electrical resistivity and reduced dielectric properties relative to the epoxy/AgNWs composites. These observed results on thermal conductivity, electrical insulation, dielectric loss and dielectric constant due to TiO2-coated AgNWs are more prominently displayed at higher nanowire loading (4 vol%) and aspect ratio (1000).

Keywords: modulus mismatch; elastic modulus; mismatch epoxy; thermal conductivity; epoxy agnws; agnws

Journal Title: Composites Science and Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.