LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of process-induced shrinkage and annealing on the thermomechanical behavior of glass fiber-reinforced polypropylene

Photo by firmbee from unsplash

Abstract We investigate the influence of process-induced shrinkage and subsequent annealing on the thermomechanical behavior of unidirectional laminates made of continuous glass fiber-reinforced polypropylene (GFPP). We use two different industrial… Click to show full abstract

Abstract We investigate the influence of process-induced shrinkage and subsequent annealing on the thermomechanical behavior of unidirectional laminates made of continuous glass fiber-reinforced polypropylene (GFPP). We use two different industrial lamination processes: static hot-press (SHP), and double-belt press (DBP) that are characterized by different cooling rates and pressure levels and most importantly, by the use of a closed mold in the case of SHP manufacturing. We measure the longitudinal and transverse shrinkage during the manufacturing and annealing processes using embedded fiber Bragg gratings (FBGs). The SHP molding reveals much lower induced shrinkage in GFPP as compared to the DBP process, although the relatively slow cooling should promote a higher degree of crystallization. We ascribe this to the constraining effect of the metallic mold used with the SHP process. The poor thermal conductivity of the mold is also responsible for a layer-like crystal microstructure in the GFPP matrix, causing a specific relaxation effect during the post-process heating treatment. Annealing generates additional shrinkage that is due to an increased degree of crystallinity and to the partial relaxation of residual stresses. However, the thermal expansion properties remain impacted by the process-induced strain state of the GFPP laminates and are still process-dependent after annealing.

Keywords: shrinkage; influence process; induced shrinkage; process induced; process; annealing thermomechanical

Journal Title: Composites Science and Technology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.