LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory

Photo from wikipedia

This paper presents flexural analysis of composite and sandwich beams using a quasi-3D theory, which considers simultaneously three effects such as normal and shear deformation as well as anisotropy coupling.… Click to show full abstract

This paper presents flexural analysis of composite and sandwich beams using a quasi-3D theory, which considers simultaneously three effects such as normal and shear deformation as well as anisotropy coupling. The axial and transverse displacements are assumed to be cubic and parabolic variation through the beam depth. In order to solve problem, two-node C1 beam elements with six degrees of freedom per node are developed. Numerical examples are carried out and the results are compared with those available in literature to validate the accuracy of the present theory. The effects of fibre angle, lay-up and span-to-height ratio on displacements and stresses are studied. Some new results, which can be useful for future references, are also given.

Keywords: beams using; theory; sandwich beams; flexural analysis; composite sandwich

Journal Title: Composite Structures
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.