LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modelling and testing of fibre metal laminates and their constituent materials in fire

Photo from wikipedia

A modelling and experimental study is presented into the deterioration to the load-bearing performance of fibre metal laminates (FML) when exposed to fire, and compared to the constituent materials (monolithic… Click to show full abstract

A modelling and experimental study is presented into the deterioration to the load-bearing performance of fibre metal laminates (FML) when exposed to fire, and compared to the constituent materials (monolithic metal and composite). A thermal-mechanical model is presented to calculate the temperature, softening and failure stress of load-bearing FMLs in fire. Experimental fire-under-load tests are performed on an FML consisting of thin bonded sheets of aluminium (AA2024) and glass fibre-polymer (GRP) composite, and its load-bearing performance in fire is compared to its consistent materials (monolithic aluminium and GRP composite) of the same thickness. The softening rate of the FML is generally faster than the monolithic aluminium or GRP plates, and its load-bearing capacity is inferior or similar to its constituent materials depending on the applied stress and radiant heat flux of the fire. The load-bearing performance of the FML is reduced by softening of both the metal and GRP layers as well as interfacial debonding between the layers. The model is capable of calculating with reasonable accuracy the reductions of the tensile and buckling failure stresses of the load-bearing FML in fire. © 2018 Elsevier Ltd

Keywords: constituent materials; fire; load bearing; fibre metal

Journal Title: Composite Structures
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.