LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis of tungstates/Ni0.5Cu0.5O nanocomposite materials for hydrogen separation cermet membranes

Photo from archive.org

Abstract In this work mixed protonic-electronic conducting nanocomposites comprised of Mo or La doped Nd5.5WO11.25-δ and Cu0.5Ni0.5O were prepared by mechanical mixing in a high energy mill and sintering at… Click to show full abstract

Abstract In this work mixed protonic-electronic conducting nanocomposites comprised of Mo or La doped Nd5.5WO11.25-δ and Cu0.5Ni0.5O were prepared by mechanical mixing in a high energy mill and sintering at 1100 °C using either conventional thermal sintering in the furnace or hot pressing in argon atmosphere. Their structural features were characterized by XRD, SEM, TEM with EDX analysis, IR and Raman spectroscopy. Electrical conductivity was measured by Van der Pauw techniques varying the temperature in dry and wet atmospheres. The oxygen mobility was studied by the oxygen isotope heteroexchange with C18O2. Successful test of membrane with permselective Nd5.5WO11.25-δ + Cu0.5Ni0.5O layer supported on NiAl foam substrate and covered by a porous layer of Ru + Ni/ Sm0.15Pr0.15Ce0.35Zr0.3O2−δ catalyst showing promising performance in hydrogen separation from products of ethanol steam reforming has been carried out. The results indicated that a maximum hydrogen permeation flux of 0.033 ml min−1 cm−2 was achieved at 900 °C using 10% ethanol with 40% of H2O/Ar as feed gas and dry high purity argon as sweep gas.

Keywords: tungstates ni0; ni0 5cu0; synthesis tungstates; 5cu0 nanocomposite; separation; hydrogen separation

Journal Title: Composite Structures
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.