Abstract This research investigates experimentally and analytically a novel one-way slab system reinforced with either basalt fiber-reinforced polymer (BFRP) or glass fiber-reinforced polymer (GFRP) longitudinal bars embedded in fiber-reinforced concrete… Click to show full abstract
Abstract This research investigates experimentally and analytically a novel one-way slab system reinforced with either basalt fiber-reinforced polymer (BFRP) or glass fiber-reinforced polymer (GFRP) longitudinal bars embedded in fiber-reinforced concrete (FRC) incorporating basalt macro-fibers (BMF). Twelve one-way concrete slab strips were prepared and tested to failure under four-point loading configuration. The investigated parameters included the type of fiber-reinforced polymer bars (BFRP and GFRP), the longitudinal reinforcement ratio ρ f (1.4 and 2.8 ρ bf , where ρ bf is the balanced reinforcement ratio), and the volume fraction of the fibers added (0, 0.5, 1, and 2% per volume). The test results demonstrated the promise of BMF to enhance the flexural performance of the tested slab strips in terms of ductility and load-carrying capacities. The formulations of different available codes and design guidelines were used to predict the test results. Comparison between the experimental and predicted results showed the adequacy of the models to predict the flexural performance of the tested slab strips. The findings of this study demonstrated the potential of using the BMF as alternatives to conventional fibers in flexural concrete members.
               
Click one of the above tabs to view related content.